Recently, DynaSys organized a workshop to demonstrate the application of RPA system. Attendees were impressed by the advanced RPA system and raised a lot of questions. Our speakers helped to solve some real cases onsite, and all attendees learnt a lot from the workshop.

RPA workshop

DynaSys is invited to demonstrate our advanced Artificial Intelligence (AI) solutions and NVIDIA DGX Station at LSCM Logistics Summit 2019. Many guests are impressed by our solutions today.

LSCM Logistic Summit_2 LSCM Logistic Summit _1

DynaSys has won the championship in NVIDIA NPN Partner Bootcamp 2019. This achievement has reaffirmed our deep knowledge in selling and supporting the AI market for HK and Macao.


Top Reseller for NVIDIA DGX Servers

In this era of diverse and rapid change, retailers are looking for success at the Hong Kong Retail Summit. DynaSys provides SkyREC A.I. video analytics and the SAP C/4HANA suite, which massively enhances the customer experience.

Retail will never die, but a retail that fails to excite will never survive.

DynaSys joined HK Retail Summit

SkyREC AI video analytics

Increase customer engagement with products using AI video analytics for retail store. Learn more as above with case studies.

NVIDIA Announces CUDA-X AI SDK For GPU-Accelerated Data Science

Data scientists working in data analytics, machine learning and deep learning will get a massive speed boost with NVIDIA’s new CUDA-X AI libraries.

Unlocking the flexibility of Tensor Core GPUs, CUDA-X AI accelerates:

  • … data science from ingest of data, to ETL, to model training, to deployment.
  • … machine learning algorithms for regression, classification, clustering.
  • … every deep learning training framework and, with this release, automatically optimizes for NVIDIA Tensor Core GPUs.
  • … inference and large-scale Kubernetes deployment in the cloud.
  • … data science in PC, workstation, supercomputers cloud, and enterprise data centers.
  • … data science in Amazon Web Services, Google Cloud and Microsoft Azure AI services.
  • … data science.

CUDA-X AI accelerates data science.

Introduced today at NVIDIA’s GPU Technology Conference, CUDA-X AI is the only end-to-end platform for the acceleration of data science.

CUDA-X AI arrives as businesses turn to AI — deep learning, machine learning and data analytics — to make data more useful.

The typical workflow for all these: data processing, feature determination, training, verification and deployment.

CUDA-X AI unlocks the flexibility of our NVIDIA Tensor Core GPUs to uniquely address this end-to-end AI pipeline.

Capable of speeding up machine learning and data science workloads by as much as 50x, CUDA-X AI consists of more than a dozen specialized acceleration libraries.

It’s already accelerating data analysis with cuDF, deep learning primitives with cuDNN; machine learning algorithms with cuML; and data processing with DALI, among others.

Together, these libraries accelerate every step in a typical AI workflow, whether it involves using deep learning to train speech and image recognition systems or data analytics to assess the risk profile of a mortgage portfolio.

Each step in these workflows requires processing large volumes of data, and each step benefits from GPU accelerated computing.

Broad Adoption

As a result, CUDA-X AI is relied on by top companies such as Charter, Microsoft, PayPal, SAS and Walmart.

It’s integrated into major deep learning frameworks such as TensorFlow, PyTorch and MXNet.

Major cloud service providers around the world use CUDA-X AI to speed up their cloud services.

And today eight of the world’s leading computer makers announced data science workstations and servers optimized to run NVIDIA’s CUDA-X AI libraries.

Available Everywhere

CUDA-X AI acceleration libraries are freely available as individual downloads or as containerized software stacks from the NVIDIA NGC software hub.

They can be deployed everywhere, including desktops, workstations, servers and on cloud computing platforms.

It’s integrated into all the data science workstations announced at GTC today. And, all the NVIDIA T4 servers announced today are optimized to run CUDA-X AI.

Learn more at

NVIDIA AI solution Lets Shoppers Avoid Long Waits at Checkout

Shopping in the future may feel a lot like shoplifting does today — without the risk of getting nabbed — if two artificial intelligence startups have their way.

New Zealand’s IMAGR and Silicon Valley’s Mashgin aim to make checking out of grocery stores and company cafeterias a walk in the park. Almost literally.

Many supermarkets offer self-checkout to save shoppers time. IMAGR founder William Chomley wants to skip the checkout altogether, so you can just walk right out the door. It’s similar to the idea behind Amazon Go, being tested in a grocery store in downtown Seattle, which lets customers shop without ever stopping at a cashier on the way out.

IMAGR makes SmartCart, an ordinary grocery cart with an AI computing video camera attached. The device tracks what goes into the cart, tallies the total along the way and syncs that with payment information on the shopper’s mobile phone.

“We want to give people the ability to shop as they normally would, and then just walk past the cashier and out of the store,” Chomley said.

High Noon at the Checkout Counter

Mashgin was born out of frustration over lunch breaks spent waiting in lines rather than chatting with friends. It’s installed its automated checkout system, also called Mashgin, in several Silicon Valley company cafeterias, including NVIDIA’s. Using GPU deep learning and computer vision, it recognizes your soup, salad or soda faster than you can gulp.

The elegant Mashgin self-checkout station features a very simple user interface. Customers simply place their lunch on the device, where five 3D cameras examine it from different angles to identify and price each item. To pay, customers swipe a credit card.

Demonstration of a future version of the Mashgin AI cafeteria checkout.
This animation depicts a future version of the Mashgin AI cafeteria checkout. Currently the device detects packaged goods, soups, salads and takeout containers, but is still being trained to identify foods on a plate. Animation courtesy of Mashgin.

The startup trained its system on a dataset of common items found in cafeterias, using the CUDA parallel computing platform, NVIDIA GeForce GTX 1080 GPUs and cuDNN with the Caffe deep learning framework. Mashgin customizes its system for each company’s cafeteria, and its deep learning algorithm learns new items as more people use it.

“It’s a huge market and there’s this big problem,” said Abhinai Srivastava, who founded the company with Mukul Dhankhar. “Everyone wants to eat at 12 o’clock.”

Catching Rays, Not Delays

IMAGR’s Chomley created SmartCart because he wasn’t getting enough sunshine. Stuck behind his computer screen at an investment fund most days, he yearned to spend a few minutes soaking up rays during lunch. Instead, the line for food at a small grocery near his office ate up his entire break.

Chomley quit his job and began work on what is now SmartCart. After several false starts — at one point, he had to take a job moving furniture to keep the company afloat — he and the IMAGR team set their course on deep learning and computer vision to enable SmartCart.

Using our TITAN X GPU and the TensorFlow deep learning framework, IMAGR initially trained its algorithms on images of grocery store products. Next, it used the SmartCart video camera to learn to recognize products put into or removed from the cart — say you reconsidered that half-gallon of chocolate chocolate-chip ice cream over a second bunch of kale. Finally, the team trained the algorithm on barcodes to learn prices.

IMAGR is planning a small SmartCart trial at a New Zealand grocery chain within the next couple of months. Chomley said several of the world’s largest supermarket chains have expressed interest in SmartCart.

“People just don’t want to be standing in huge lines,” he said. “They want to get in and get out.”

Source: NVIDIA Blog